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INCLUSIVE DECAYS: BASICS

Simple idea: inclusive decays do not depend on final state, long distance 
dynamics of the B meson factorizes. An OPE allows us to express it in terms of B 
meson matrix elements of local operators, embodying quark-hadron duality 

The Wilson coefficients are perturbative, matrix elements of local ops 
parameterize non-pert physics: double series in αs, Λ/mb 

Lowest order: decay of a free b,  linear Λ/mb absent. Depends on mb,c, 2 
parameters at O(1/mb2), 2 more at O(1/mb3)... 
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INCLUSIVE SEMILEPTONIC B DECAYS
  Inclusive observables are double series in 𝛬/mb and αs
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Reliability of the method depends on our control of higher order effects.  Quark-
hadron duality violation would manifest as inconsistency in the fit.

Current HFLAV kinetic scheme fit includes all corrections , mc 
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EXTRACTION OF THE OPE PARAMETERS 

 Global shape parameters (first moments of the distributions, various lower 
cut on El) tell us about mb, mc and the B structure, total rate about |Vcb|

 
OPE parameters describe universal properties of the B meson and of the 

quarks → useful in many applications (rare decays, Vub,...) 

hadronic mass spectrumEl spectrum



FIT RESULTS

results depend little on 
assumption for correlations and 
choice of inputs, 1.8% 
determination of  Vcb

20-30% determination of the 
OPE parameters

b mass determination in 
agreement with recent lattice 
and sum rules results

Without mass constraints
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a(1) a(2,�0) a(2) p(1) g(0) g(1) d(0)

-0.95 -0.47 0.71 0.99 -1.91 -3.51 -16.6

-1.66 -0.43 -2.04 1.35 -1.84 -2.98 -17.5

-1.24 -0.28 0.01 1.14 -1.91 -3.23 -16.6

TABLE I. Coe⇥cients of (3) for mkin
b (1GeV) = 4.55GeV and

with the charm mass in the kinetic scheme, mkin
c (1GeV) =

1.091GeV (first row), and in the MS scheme, mc(3GeV) =
0.986GeV (2nd row) and mc(2GeV) = 1.091GeV (3rd row).
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where E� is the lepton energy, m2
X the invariant hadronic

squared mass, and Ecut an experimental threshold on the
lepton energy applied by some of the experiments. Since
the physical information of moments of the same type is
highly correlated, for n > 1 it is better to employ central
moments, computed relative to ⇧E�⌃ and ⇧m2

X⌃. The in-
formation on the non-perturbative parameters obtained
from a fit to the moments enables us to extract |Vcb| from
the total semileptonic width [19–21].

The expansion for the total semileptonic width is
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cb|G2
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b(1 � 8⇧ + 8⇧3 � ⇧4 �

12⇧2 ln ⇧)/192⌅3 is the tree level free quark decay width,
⇧ = m2

c/m
2
b , and Aew = 1.014 the leading electroweak

correction. We have split the �2
s coe⇧cient into a BLM

piece proportional to ⇥0 = 9 (with three massless ac-
tive quark flavors) and a remainder. The expansions for
the moments have the same structure. The parameters
µ2
⇥, µ

2
G, ⇧

3
D, ⇧3LS are the B meson expectation values of

the relevant dimension 5 and 6 local operators.
In Eq. (3) and in the calculation of all the moments we

have included the complete one and two-loop perturba-
tive corrections [22–27], as well as 1/m2,3

b power correc-
tions [16–18, 28]. We neglect contributions of order 1/m4

b
and 1/m5

Q [29], which appear to lead to a very small shift
in |Vcb|, but we include for the first time the perturbative
corrections to the leading power suppressed contributions
[13–15] to the width (see also [30] for the limit mc ⌅ 0)
and to all the moments [31].

The coe⇧cients a(i), g(i), p(1), d(0) in Eq. (3) are func-
tions of ⇧ and of various unphysical scales, such as the
one of �s. They are given in Table 1 for specific val-
ues of the quark masses. We use the kinetic scheme [32]
with cuto⇥ at 1GeV for mb and the OPE parameters and
three di⇥erent options for the charm mass.

mkin
b mc(3GeV) µ2

⇤ ⇥3D µ2
G ⇥3LS BRc ⇥ 103|Vcb|

4.553 0.987 0.465 0.170 0.332 -0.150 10.65 42.21

0.020 0.013 0.068 0.038 0.062 0.096 0.16 0.78

1 0.508 -0.099 0.142 0.596 -0.173 -0.075 -0.427

1 -0.013 0.002 -0.023 0.007 0.016 -0.047

1 0.711 -0.025 0.041 0.144 0.338

1 -0.064 -0.154 0.065 0.195

1 -0.032 -0.022 -0.255

1 -0.017 0.011

1 0.359

1

TABLE II. Results of the global fit in our default scenario.
All parameters are in GeV at the appropriate power and all,
except mc, in the kinetic scheme at µ = 1GeV. The first
and second rows give central values and uncertainties, the
correlation matrix follows.

THE GLOBAL FIT

The available measurements of the semileptonic mo-
ments [4] and the recent, precise determinations of the
heavy quark masses significantly constrain the parame-
ters entering Eq. (3), making possible a determination of
|Vcb| whose uncertainty is dominated by our ignorance
of higher order e⇥ects. Duality violation e⇥ects can be
constrained a posteriori, by checking whether the OPE
predictions fit the experimental data, but this again de-
pends on precise OPE predictions.
We perform a fit to the semileptonic data listed in

Table 1 of Ref. [8] with �s(4.6GeV) = 0.22 and em-
ploy a few additional inputs. Since the moments are
mostly sensitive to ⇤ mb � 0.8mc, it is essential to in-
clude information on at least one of the heavy quark
masses. Because of its smaller absolute uncertainty, mc

is preferable. Among recent mc determinations [33–35]
we choose mc(3GeV) = 0.986(13)GeV [33], although
we will discuss the inclusion of mb determinations as
well. We also include a loose bound on the chromomag-
netic expectation value from the B hyperfine splitting,
µ2
G(mb) = 0.35(7)GeV2. Finally, as all observables de-

pend very weakly on ⇧3LS , we use the heavy quark sum
rule constraint ⇧3LS = �0.15(10)GeV3.
As should be clear from the above discussion on higher

orders in the OPE, the estimate of theoretical errors and
of their correlation is crucial. We follow the strategy of
[8, 19] for theoretical uncertainties, updating it because
of the new corrections that we include. In particular, we
assign an irreducible uncertainty of 8 MeV to mc,b, and
vary �s(mb) by ±0.018, µ2

⇥ and µ2
G by ±7%, ⇧3D and ⇧3LS

by ±30%. This implies a total theoretical uncertainty
between 2.0% and 2.6% in the semileptonic width, de-
pending on the scheme. For the theory correlations we
adopt scenario D of Ref. [8], i.e. we assume no correla-

mkin
b (1GeV)� 0.85mc(3GeV) = 3.714± 0.018GeV
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HIGHER POWER CORRECTIONS
Proliferation of non-pert parameters  starting 1/m4: 9 at dim 7, 18 at dim 8

Lowest Lying State Saturation 
Approx (LLSA) truncating    

Mannel,Turczyk,Uraltsev
 1009.4622

�B|O1O2|B⇥ =
X

n

�B|O1|n⇥�n|O2|B⇥
see also Heinonen,Mannel 1407.4384

and relating higher dimensional to lower dimensional matrix elements, e.g.

excitation energy to P-wave states. LLSA might set the scale of effect, but large 
corrections to LLSA have been found in some cases 1206.2296 

⇢3D = ✏µ2
⇡ ⇢3LS = �✏µ2

G ✏ ⇠ 0.4GeV

In principle relevant: HQE contains O(1/mn
b1/mk

c )

We use LLSA as loose constraint or priors (60% gaussian uncertainty, dimensional 
estimate for vanishing matrix elements) in a fit including higher powers. The rest of 
the fit is unchanged, with slightly smaller theoretical errors

|Vcb| = 42.00(64)⇥ 10�3 Healy, Turzcyk,PG 1606.06174



PROSPECTS for INCLUSIVE Vcb

Theoretical uncertainties generally larger than experimental ones 
O(αs/mb3) calculation completed for width (Mannel, Pivovarov) in progress 
for the moments (S. Nandi, PG)

3loop relation between MS and kin scheme just completed 2005.06487        
It can be used to improve the precision of the mb input

O(𝛼s3) corrections to total width just completed by Fael, Schoenwald, 
Steinhauser 2011.13654: towards 1% uncertainty
Electroweak (QED) corrections require attention
New observables in view of Belle-II: FB asymmetry proposed by S.Turczyk 
could be measured already by Babar and Belle now, q2 moments (Fael, 
Mannel, Vos)…
Lattice QCD is the next frontier



MESON MASSES FROM ETMC

on the lattice one can compute mesons for arbitrary quark masses
We used both pseudoscalar and vector mesons
Direct 2+1+1 simulation, a=0.62-0.89 fm, mπ=210-450 MeV, heavy masses 
from mc to 3mc, ETM ratio method with extrapolation to static point.
Kinetic scheme with cutoff at 1GeV,  good sensitivity up to 1/m3  corrections
Results consistent with s.l. fits, improvements under way, also following new 
3loop calculation of pole-kinetic mass relation

MHQ = mQ + ⇤̄+
µ2
⇡
� aHµ2

G

2mQ

+ . . .

see also Kronfeld & Simone hep-ph/0006345, 1802.04248

Melis, Simula, PG 1704.06105



INCLUSIVE DECAYS ON THE LATTICE

Inclusive processes nearly impossible to treat directly on the lattice

However, vacuum current correlators can be computed in euclidean 
space-time and related to  hadrons or   decay via analyticity

In our case the correlators have to be computed in the B meson  
Hashimoto 1703.01881

Analytic continuation more complicated: two cuts, decay occurs only 
on a portion of the physical cut.

While the calculation of the spectral density of hadronic correlators is 
an ill-posed problem, it is accessible after smearing, as provided by 
phase-space integration    Hansen, Meyer, Robaina, Lupo, Tantalo, Bailas, Hashimoto, Ishikawa

e+e− → τ



A NEW APPROACH

where ω hadr. energy,   linear combinations of  .                             
4point functions on the lattice are related to the hadronic tensor in euclidean

X(l) Wμν

Hashimoto, PG 2005.13730 
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ble charmed states which may appear in the quark-level
decay process b ! c`⌫̄. After describing the kinematics
of the decay and the method to calculate the inclusive
decay rate, we present a pilot lattice study.

For the analysis of the Bs ! Xc`⌫̄ decay, we assign
the momentum pµ for the initial B meson, the momenta
pµ
`

and pµ⌫̄ for the leptons ` and ⌫̄ in the final state, re-
spectively. Then, the hadronic state Xc has momentum
(p� q)µ with qµ = (p` +p⌫̄)µ. The di↵erential decay rate
is written as [15, 16]

d�

dq2dq0dE`

=
G2

F
|Vcb|2

8⇡3
Lµ⌫W

µ⌫ , (1)

where GF is the Fermi constant and |Vcb| is one of
the Cabibbo-Kobayashi-Maskawa matrix elements. The
transfer momentum qµ and the lepton energy E` are
evaluated in the rest frame of the initial Bs meson.
The leptonic tensor Lµ⌫ is explicitly written as Lµ⌫ =
pµ
`
p⌫
⌫̄
�p` ·p⌫̄gµ⌫ +p⌫

`
pµ⌫̄ � i✏µ↵⌫�p`,↵p⌫̄,� for massless neu-

trinos. The hadronic tensor Wµ⌫(p, q) is defined through

Wµ⌫(p, q) =
X

Xc

(2⇡)3�(4)(p � q � r)

⇥ 1

2EBs

hBs(p)|Jµ†|Xc(r)ihXc(r)|J⌫ |Bs(p)i. (2)

It is summed over all possible final states Xc to represent
the inclusive decay. The electroweak current relevant for
this decay mode is Jµ = (V � A)µ = c̄�µ(1 � �5)b.

One can perform an integral over the lepton energy E`

in (1), and the remaining integrals over q2 and r2 can
be rewritten in terms of ! and q2, energy and spatial
momentum squared of the final hadrons Xc in the rest
frame of the initial Bs meson, respectively. Thus, the
total decay rate may be calculated as
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Z q2
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+q2

d!X(l) (4)

with

X(0) = q2(W 00 � 2W ii), (5)

X(1) = �(mBs � !)qk(W
0k + W k0), (6)

X(2) = (mBs � !)2(W kk + 2W ii). (7)

Here, we take the momentum q in the k-th direction,
while the i-th direction is supposed to be perpendicular
to that. The repeated indices in (5) and (7) are not
summed. The integral over the final state energy ! in
(4) represents the sum over di↵erent states that could
appear for a given momentum q.

On the lattice, as a counter part of the hadronic ten-
sor Wµ⌫ , one can calculate the forward-scattering matrix
elements of the form [13]

CJJ

µ⌫
(t; q)

=
X

x

eiq·x
1

2mBs

hBs(0)|J†
µ
(x, t)J⌫(0, 0)|Bs(0)i (8)

from four-point functions that contain interpolating op-
erators to create and annihilate the Bs meson state
|Bs(0)i. Here we set the initial Bs meson state at rest.

Introducing the transfer matrix on the lattice e�Ĥt, the
time dependence of the matrix element in (8) may be
expressed as

1

V

1

2mBs

hBs(0)|J̃†
µ
(�q)e�ĤtJ̃⌫(q)|B(0)i, (9)

where J̃⌫(q) denotes a Fourier transform of the inserted
current: J̃⌫(q) =

P
x eiq·xJ⌫(x). On the other hand, the

integral over the final-state energy (4) can be rewritten
in the form
Z 1

0
d!K(!, q)hBs(0)|J̃†

µ
(�q)�(Ĥ � !)J̃⌫(q)|Bs(0)i

= hBs(0)|J̃†
µ
(�q)K(Ĥ, q)J̃⌫(q)|Bs(0)i,

(10)

where K(!, q) represents an integral kernel determined
by the explicit form of the integrands (5)–(7). We note
that the ! integral is implicit on the right hand side; all
the intermediate states may exist between the currents.
Comparing the right hand side with (9), we find that the
integral (10) can be evaluated if the kernel operator is
well approximated by a polynomial of the form

K(Ĥ, q) = k0(q) + k1(q)e�Ĥ + · · · + kN (q)e�NĤ (11)

with some coe�cients kj(q), since the matrix elements
of the individual term on the right hand side are nothing
but CJJ

µ⌫
(t; q)’s.

The best approximation of K(Ĥ, q) can be obtained
using the Chebyshev polynomials. We define a state
| µ(q)i on which the kernel operator is evaluated as

| µ(q)i = e�Ĥt0 J̃µ(q)|Bs(0)i. A small time evolution

e�Ĥt0 with a constant time t0 is introduced to avoid any
potential divergence in h µ(q)| ⌫(q)i. We can then con-
struct an approximation as

h µ|K(Ĥ)| ⌫i
h µ| ⌫i

' c⇤0
2

+
NX

j=1

c⇤
j

h µ|T ⇤
j
(e�Ĥ)| ⌫i

h µ| ⌫i
, (12)

where T ⇤
j
(x) stands for the shifted Chebyshev polyno-

mials. (The dependence on q is omitted for simplic-
ity.) They are derived from the standard Chebyshev
polynomials Tj(x) as T ⇤

j
(x) ⌘ Tj(2x � 1), so that they

2

ble charmed states which may appear in the quark-level
decay process b ! c`⌫̄. After describing the kinematics
of the decay and the method to calculate the inclusive
decay rate, we present a pilot lattice study.

For the analysis of the Bs ! Xc`⌫̄ decay, we assign
the momentum pµ for the initial B meson, the momenta
pµ
`

and pµ⌫̄ for the leptons ` and ⌫̄ in the final state, re-
spectively. Then, the hadronic state Xc has momentum
(p� q)µ with qµ = (p` +p⌫̄)µ. The di↵erential decay rate
is written as [15, 16]

d�

dq2dq0dE`

=
G2

F
|Vcb|2

8⇡3
Lµ⌫W

µ⌫ , (1)

where GF is the Fermi constant and |Vcb| is one of
the Cabibbo-Kobayashi-Maskawa matrix elements. The
transfer momentum qµ and the lepton energy E` are
evaluated in the rest frame of the initial Bs meson.
The leptonic tensor Lµ⌫ is explicitly written as Lµ⌫ =
pµ
`
p⌫
⌫̄
�p` ·p⌫̄gµ⌫ +p⌫

`
pµ⌫̄ � i✏µ↵⌫�p`,↵p⌫̄,� for massless neu-

trinos. The hadronic tensor Wµ⌫(p, q) is defined through

Wµ⌫(p, q) =
X

Xc

(2⇡)3�(4)(p � q � r)

⇥ 1

2EBs

hBs(p)|Jµ†|Xc(r)ihXc(r)|J⌫ |Bs(p)i. (2)

It is summed over all possible final states Xc to represent
the inclusive decay. The electroweak current relevant for
this decay mode is Jµ = (V � A)µ = c̄�µ(1 � �5)b.

One can perform an integral over the lepton energy E`

in (1), and the remaining integrals over q2 and r2 can
be rewritten in terms of ! and q2, energy and spatial
momentum squared of the final hadrons Xc in the rest
frame of the initial Bs meson, respectively. Thus, the
total decay rate may be calculated as

� =
G2

F
|Vcb|2

24⇡3

Z q2
max

0
dq2

p
q2

2X

l=0

X̄(l), (3)

where q2
max = ((m2

Bs
� m2

Ds
)/2mBs)

2 and

X̄(l) ⌘
Z

mBs�
p

q2

p
m

2
Ds

+q2

d!X(l) (4)

with

X(0) = q2(W 00 � 2W ii), (5)

X(1) = �(mBs � !)qk(W
0k + W k0), (6)

X(2) = (mBs � !)2(W kk + 2W ii). (7)

Here, we take the momentum q in the k-th direction,
while the i-th direction is supposed to be perpendicular
to that. The repeated indices in (5) and (7) are not
summed. The integral over the final state energy ! in
(4) represents the sum over di↵erent states that could
appear for a given momentum q.

On the lattice, as a counter part of the hadronic ten-
sor Wµ⌫ , one can calculate the forward-scattering matrix
elements of the form [13]

CJJ

µ⌫
(t; q)

=
X

x

eiq·x
1

2mBs

hBs(0)|J†
µ
(x, t)J⌫(0, 0)|Bs(0)i (8)

from four-point functions that contain interpolating op-
erators to create and annihilate the Bs meson state
|Bs(0)i. Here we set the initial Bs meson state at rest.

Introducing the transfer matrix on the lattice e�Ĥt, the
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pµ⌫̄ � i✏µ↵⌫�p`,↵p⌫̄,� for massless neu-

trinos. The hadronic tensor Wµ⌫(p, q) is defined through

Wµ⌫(p, q) =
X

Xc

(2⇡)3�(4)(p � q � r)

⇥ 1

2EBs

hBs(p)|Jµ†|Xc(r)ihXc(r)|J⌫ |Bs(p)i. (2)

It is summed over all possible final states Xc to represent
the inclusive decay. The electroweak current relevant for
this decay mode is Jµ = (V � A)µ = c̄�µ(1 � �5)b.

One can perform an integral over the lepton energy E`

in (1), and the remaining integrals over q2 and r2 can
be rewritten in terms of ! and q2, energy and spatial
momentum squared of the final hadrons Xc in the rest
frame of the initial Bs meson, respectively. Thus, the
total decay rate may be calculated as

� =
G2

F
|Vcb|2

24⇡3

Z q2
max

0
dq2

p
q2

2X

l=0

X̄(l), (3)

where q2
max = ((m2

Bs
� m2

Ds
)/2mBs)

2 and

X̄(l) ⌘
Z

mBs�
p

q2

p
m

2
Ds

+q2

d!X(l) (4)

with

X(0) = q2(W 00 � 2W ii), (5)

X(1) = �(mBs � !)qk(W
0k + W k0), (6)

X(2) = (mBs � !)2(W kk + 2W ii). (7)

Here, we take the momentum q in the k-th direction,
while the i-th direction is supposed to be perpendicular
to that. The repeated indices in (5) and (7) are not
summed. The integral over the final state energy ! in
(4) represents the sum over di↵erent states that could
appear for a given momentum q.

On the lattice, as a counter part of the hadronic ten-
sor Wµ⌫ , one can calculate the forward-scattering matrix
elements of the form [13]

CJJ

µ⌫
(t; q)

=
X

x

eiq·x
1

2mBs

hBs(0)|J†
µ
(x, t)J⌫(0, 0)|Bs(0)i (8)

from four-point functions that contain interpolating op-
erators to create and annihilate the Bs meson state
|Bs(0)i. Here we set the initial Bs meson state at rest.

Introducing the transfer matrix on the lattice e�Ĥt, the
time dependence of the matrix element in (8) may be
expressed as

1

V

1

2mBs

hBs(0)|J̃†
µ
(�q)e�ĤtJ̃⌫(q)|B(0)i, (9)

where J̃⌫(q) denotes a Fourier transform of the inserted
current: J̃⌫(q) =

P
x eiq·xJ⌫(x). On the other hand, the

integral over the final-state energy (4) can be rewritten
in the form
Z 1

0
d!K(!, q)hBs(0)|J̃†

µ
(�q)�(Ĥ � !)J̃⌫(q)|Bs(0)i

= hBs(0)|J̃†
µ
(�q)K(Ĥ, q)J̃⌫(q)|Bs(0)i,

(10)

where K(!, q) represents an integral kernel determined
by the explicit form of the integrands (5)–(7). We note
that the ! integral is implicit on the right hand side; all
the intermediate states may exist between the currents.
Comparing the right hand side with (9), we find that the
integral (10) can be evaluated if the kernel operator is
well approximated by a polynomial of the form

K(Ĥ, q) = k0(q) + k1(q)e�Ĥ + · · · + kN (q)e�NĤ (11)

with some coe�cients kj(q), since the matrix elements
of the individual term on the right hand side are nothing
but CJJ

µ⌫
(t; q)’s.

The best approximation of K(Ĥ, q) can be obtained
using the Chebyshev polynomials. We define a state
| µ(q)i on which the kernel operator is evaluated as

| µ(q)i = e�Ĥt0 J̃µ(q)|Bs(0)i. A small time evolution

e�Ĥt0 with a constant time t0 is introduced to avoid any
potential divergence in h µ(q)| ⌫(q)i. We can then con-
struct an approximation as

h µ|K(Ĥ)| ⌫i
h µ| ⌫i

' c⇤0
2

+
NX

j=1

c⇤
j

h µ|T ⇤
j
(e�Ĥ)| ⌫i

h µ| ⌫i
, (12)

where T ⇤
j
(x) stands for the shifted Chebyshev polyno-

mials. (The dependence on q is omitted for simplic-
ity.) They are derived from the standard Chebyshev
polynomials Tj(x) as T ⇤

j
(x) ⌘ Tj(2x � 1), so that they

tsrc t1 t2 tsnk

J†
µ Jν

BB

Fig. 4 Valence quark propagators and their truncations. The thin line connecting the

source tsrc and sink tsnk time slices represents the spectator strange quark propagator. A

smearing is introduced for the initial B meson interpolating operator at tsrc and tsnk. The

solid thick lines are the initial b and dashed line denotes the final c quark. The currents J†
µ

and Jν are inserted at t1 and t2, respectively.

see [24–26] for instance.) So far, in the literature, the moments of hadron energy and invari-

ant mass as well as the lepton energy have been considered; our proposal is to analyze the

inverse moments (12) and (13) at sufficiently small ω, instead, to extract |Vcb| or |Vub|. To
actually extract the moments from the experimental data is beyond the scope of this work.

The structure functions Ti have been calculated within the heavy quark expansion

approach. At the tree-level, the explicit form is given in the appendix of [23]. One-loop

or even two-loop calculations have also been carried out [27–29], but they only concern the

differential decay rates (or the imaginary part of the structure functions), and one needs to

perform the contour integral to relate them to the unphysical kinematical region.

4 Lattice calculation strategy

In this section, we describe the method to extract Ti’s from a four-point function calcu-

lated on the lattice. Although we take the B → D(∗)ℓν channel to be specific, the extension

to other related channels is straightforward.

We consider the four-point function of the form

CSJJS
µν (tsnk, t1, t2, tsrc) =

∑

x

〈

P S(x, tsnk)J̃
†
µ(q, t1)J̃ν(q, t2)P

S†(0, tsrc)
〉

, (14)

where P S is a smeared pseudo-scalar density operator to create/annihilate the initial B

meson at rest. The inserted currents J̃µ are either vector or axial-vector b → c current

and assumed to carry the spatial momentum projection
∑

x1
eiq·x1J(x1, t1). Thus, the mass

dimension of J̃µ is zero. The quark-line diagram representing (14) is shown in Figure 4.
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where GF is the Fermi constant. The momentum trans-
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hB̄s(p)|Jµ†|Xc(r)ihXc(r)|J⌫ |B̄s(p)i. (2)

It is summed over all possible final states Xc to represent
the inclusive decay. The electroweak current relevant for
this decay mode is Jµ = (V � A)µ = c̄�µ(1 � �5)b.

One can perform an integral over the lepton energy E`

in (1), and the remaining integrals over q2 and q0 can
be rewritten in terms of ! and q2, energy and spatial
momentum squared of the final hadrons Xc, respectively.
Thus, the total decay rate can be calculated as
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d!X(l) (4)

with

X(0) = q2(W 00 � 2W ii), (5)

X(1) = �(mBs � !)qk(W
0k + W k0), (6)

X(2) = (mBs � !)2(W kk + 2W ii). (7)

Here, we take the momentum q in the k-th direction,
while the i-th direction is assumed to be perpendicular
to that. The repeated indices in (5)–(7) are not summed.
The integral with respect to ! in (4) represents the sum
over states that could appear for a given momentum q.

On the lattice, as a counterpart of the hadronic ten-
sor Wµ⌫ , one can calculate the forward-scattering matrix
elements of the form [9]

CJJ

µ⌫
(t; q) =

X

x

eiq·x

2mBs

hB̄s(0)|J†
µ
(x,t)J⌫(0,0)|B̄s(0)i (8)

from four-point functions including the interpolating op-
erators for the B̄s meson state |B̄s(0)i. Now we intro-

duce the transfer matrix on the lattice e�Ĥt to express
the time dependence of the matrix element in (8) as

1

V

1

2mBs

hB̄s(0)|J̃†
µ
(�q)e�ĤtJ̃⌫(q)|B̄s(0)i, (9)

where J̃⌫(q) denotes a Fourier transform of the inserted
current: J̃⌫(q) =

P
x eiq·xJ⌫(x). On the other hand, the

integral over ! in (4) can be rewritten in the form

Z 1

0
d!K(!, q)hB̄s(0)|J̃†

µ
(�q)�(Ĥ � !)J̃⌫(q)|B̄s(0)i

= hB̄s(0)|J̃†
µ
(�q)K(Ĥ, q)J̃⌫(q)|B̄s(0)i.

(10)

Here K(!, q) represents an integral kernel determined
by the explicit form of the integrands (5)–(7). The !-
integral is implicit on the right hand side; all the inter-
mediate states may exist between the currents. Compar-
ing the right hand side with (9), we find that the integral
(10) can be evaluated if the kernel operator is well ap-
proximated by a polynomial of the form

K(Ĥ, q) = k0(q) + k1(q)e�Ĥ + · · · + kN (q)e�NĤ (11)

with some coe�cients kj(q), since the matrix elements
of the individual term on the right hand side are nothing
but CJJ

µ⌫
(t; q)’s.

The best approximation of K(Ĥ, q) can be achieved
using the Chebyshev polynomials. We define a state
| µ(q)i on which the kernel operator is evaluated as

| µ(q)i = e�Ĥt0 J̃µ(q)|B̄s(0)i. A small time evolution

e�Ĥt0 with a constant time t0 is introduced to avoid any
potential divergence in h µ(q)| ⌫(q)i. We can then con-
struct an approximation as

h µ|K(Ĥ)| ⌫i
h µ| ⌫i

' c⇤0
2

+
NX

j=1

c⇤
j

h µ|T ⇤
j
(e�Ĥ)| ⌫i

h µ| ⌫i
. (12)

(The dependence on q is omitted for simplicity.) T ⇤
j
(x)

stands for the shifted Chebyshev polynomials, which
are derived from the standard Chebyshev polynomials
Tj(x) as T ⇤

j
(x) ⌘ Tj(2x � 1), so that they are de-

fined in the range 0  x  1. Their first few terms
are T ⇤

0 (x) = 1, T ⇤
1 (x) = 2x � 1, T ⇤

2 (x) = 8x2 �
8x + 1, and the others can be obtained recursively
by T ⇤

j+1(x) = (4x � 2)T ⇤
j
(x) � T ⇤

j�1(x). Each term

of h µ|T ⇤
j
(e�Ĥ)| ⌫i/h µ| ⌫i can be constructed from

CJJ

µ⌫
(t + 2t0)/CJJ

µ⌫
(2t0) = h µ|e�Ĥt| ⌫i/h µ| ⌫i.

The coe�cients c⇤
j

in (12) are obtained from

c⇤
j

=
2

⇡

Z
⇡

0
d✓K

✓
� ln

1 + cos ✓

2

◆
cos(j✓), (13)

according to the general formula of the Chebyshev ap-
proximation. The Chebyshev approximation is the best
in the sense that its maximum deviation in x 2 [0, 1] is
minimized among polynomials of order N .

The integral kernel K(!, q) is chosen as

K(l)
�

(!) = e2!t0(�
p

q2)2�l(mBs � !)l

⇥✓�(mBs �
p

q2 � !) (14)

for l = 0, 1, or 2 corresponding to X(l), (5)–(7). An ap-
proximate Heaviside step function ✓�(x) is introduced to

∼ Im i∫ d4xe−iq.x⟨Bs |TJμ†(x)Jν(0) |Bs⟩Wμν ∼ ∑
Xc

triple diff distribution Bs decays

after integration over El

∼ ⟨Bs |Jμ†(x, t)Jν(0,0) |Bs⟩

= ∫ K(ω, q)μνWμνdω
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ble charmed states which may appear in the quark-level
decay process b ! c`⌫̄. After describing the kinematics
of the decay and the method to calculate the inclusive
decay rate, we present a pilot lattice study.

For the analysis of the Bs ! Xc`⌫̄ decay, we assign
the momentum pµ for the initial B meson, the momenta
pµ
`

and pµ⌫̄ for the leptons ` and ⌫̄ in the final state, re-
spectively. Then, the hadronic state Xc has momentum
(p� q)µ with qµ = (p` +p⌫̄)µ. The di↵erential decay rate
is written as [15, 16]

d�

dq2dq0dE`

=
G2

F
|Vcb|2

8⇡3
Lµ⌫W

µ⌫ , (1)

where GF is the Fermi constant and |Vcb| is one of
the Cabibbo-Kobayashi-Maskawa matrix elements. The
transfer momentum qµ and the lepton energy E` are
evaluated in the rest frame of the initial Bs meson.
The leptonic tensor Lµ⌫ is explicitly written as Lµ⌫ =
pµ
`
p⌫
⌫̄
�p` ·p⌫̄gµ⌫ +p⌫

`
pµ⌫̄ � i✏µ↵⌫�p`,↵p⌫̄,� for massless neu-

trinos. The hadronic tensor Wµ⌫(p, q) is defined through

Wµ⌫(p, q) =
X

Xc

(2⇡)3�(4)(p � q � r)

⇥ 1

2EBs

hBs(p)|Jµ†|Xc(r)ihXc(r)|J⌫ |Bs(p)i. (2)

It is summed over all possible final states Xc to represent
the inclusive decay. The electroweak current relevant for
this decay mode is Jµ = (V � A)µ = c̄�µ(1 � �5)b.

One can perform an integral over the lepton energy E`

in (1), and the remaining integrals over q2 and r2 can
be rewritten in terms of ! and q2, energy and spatial
momentum squared of the final hadrons Xc in the rest
frame of the initial Bs meson, respectively. Thus, the
total decay rate may be calculated as
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F
|Vcb|2

24⇡3

Z q2
max

0
dq2

p
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2X

l=0

X̄(l), (3)

where q2
max = ((m2
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)/2mBs)

2 and

X̄(l) ⌘
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mBs�
p
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p
m

2
Ds

+q2

d!X(l) (4)

with

X(0) = q2(W 00 � 2W ii), (5)

X(1) = �(mBs � !)qk(W
0k + W k0), (6)

X(2) = (mBs � !)2(W kk + 2W ii). (7)

Here, we take the momentum q in the k-th direction,
while the i-th direction is supposed to be perpendicular
to that. The repeated indices in (5) and (7) are not
summed. The integral over the final state energy ! in
(4) represents the sum over di↵erent states that could
appear for a given momentum q.

On the lattice, as a counter part of the hadronic ten-
sor Wµ⌫ , one can calculate the forward-scattering matrix
elements of the form [13]

CJJ

µ⌫
(t; q)

=
X

x

eiq·x
1

2mBs

hBs(0)|J†
µ
(x, t)J⌫(0, 0)|Bs(0)i (8)

from four-point functions that contain interpolating op-
erators to create and annihilate the Bs meson state
|Bs(0)i. Here we set the initial Bs meson state at rest.

Introducing the transfer matrix on the lattice e�Ĥt, the
time dependence of the matrix element in (8) may be
expressed as

1

V

1

2mBs

hBs(0)|J̃†
µ
(�q)e�ĤtJ̃⌫(q)|B(0)i, (9)

where J̃⌫(q) denotes a Fourier transform of the inserted
current: J̃⌫(q) =

P
x eiq·xJ⌫(x). On the other hand, the

integral over the final-state energy (4) can be rewritten
in the form
Z 1

0
d!K(!, q)hBs(0)|J̃†

µ
(�q)�(Ĥ � !)J̃⌫(q)|Bs(0)i

= hBs(0)|J̃†
µ
(�q)K(Ĥ, q)J̃⌫(q)|Bs(0)i,

(10)

where K(!, q) represents an integral kernel determined
by the explicit form of the integrands (5)–(7). We note
that the ! integral is implicit on the right hand side; all
the intermediate states may exist between the currents.
Comparing the right hand side with (9), we find that the
integral (10) can be evaluated if the kernel operator is
well approximated by a polynomial of the form

K(Ĥ, q) = k0(q) + k1(q)e�Ĥ + · · · + kN (q)e�NĤ (11)

with some coe�cients kj(q), since the matrix elements
of the individual term on the right hand side are nothing
but CJJ

µ⌫
(t; q)’s.

The best approximation of K(Ĥ, q) can be obtained
using the Chebyshev polynomials. We define a state
| µ(q)i on which the kernel operator is evaluated as

| µ(q)i = e�Ĥt0 J̃µ(q)|Bs(0)i. A small time evolution

e�Ĥt0 with a constant time t0 is introduced to avoid any
potential divergence in h µ(q)| ⌫(q)i. We can then con-
struct an approximation as

h µ|K(Ĥ)| ⌫i
h µ| ⌫i

' c⇤0
2

+
NX

j=1

c⇤
j

h µ|T ⇤
j
(e�Ĥ)| ⌫i

h µ| ⌫i
, (12)

where T ⇤
j
(x) stands for the shifted Chebyshev polyno-

mials. (The dependence on q is omitted for simplic-
ity.) They are derived from the standard Chebyshev
polynomials Tj(x) as T ⇤

j
(x) ⌘ Tj(2x � 1), so that they
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with some coe�cients kj(q), since the matrix elements
of the individual term on the right hand side are nothing
but CJJ

µ⌫
(t; q)’s.

The best approximation of K(Ĥ, q) can be obtained
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decay rate, we present a pilot lattice study.

For the analysis of the Bs ! Xc`⌫̄ decay, we assign
the momentum pµ for the initial B meson, the momenta
pµ
`

and pµ⌫̄ for the leptons ` and ⌫̄ in the final state, re-
spectively. Then, the hadronic state Xc has momentum
(p� q)µ with qµ = (p` +p⌫̄)µ. The di↵erential decay rate
is written as [15, 16]
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where GF is the Fermi constant and |Vcb| is one of
the Cabibbo-Kobayashi-Maskawa matrix elements. The
transfer momentum qµ and the lepton energy E` are
evaluated in the rest frame of the initial Bs meson.
The leptonic tensor Lµ⌫ is explicitly written as Lµ⌫ =
pµ
`
p⌫
⌫̄
�p` ·p⌫̄gµ⌫ +p⌫

`
pµ⌫̄ � i✏µ↵⌫�p`,↵p⌫̄,� for massless neu-

trinos. The hadronic tensor Wµ⌫(p, q) is defined through
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hBs(p)|Jµ†|Xc(r)ihXc(r)|J⌫ |Bs(p)i. (2)

It is summed over all possible final states Xc to represent
the inclusive decay. The electroweak current relevant for
this decay mode is Jµ = (V � A)µ = c̄�µ(1 � �5)b.

One can perform an integral over the lepton energy E`

in (1), and the remaining integrals over q2 and r2 can
be rewritten in terms of ! and q2, energy and spatial
momentum squared of the final hadrons Xc in the rest
frame of the initial Bs meson, respectively. Thus, the
total decay rate may be calculated as
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X(0) = q2(W 00 � 2W ii), (5)

X(1) = �(mBs � !)qk(W
0k + W k0), (6)

X(2) = (mBs � !)2(W kk + 2W ii). (7)

Here, we take the momentum q in the k-th direction,
while the i-th direction is supposed to be perpendicular
to that. The repeated indices in (5) and (7) are not
summed. The integral over the final state energy ! in
(4) represents the sum over di↵erent states that could
appear for a given momentum q.

On the lattice, as a counter part of the hadronic ten-
sor Wµ⌫ , one can calculate the forward-scattering matrix
elements of the form [13]
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(x, t)J⌫(0, 0)|Bs(0)i (8)

from four-point functions that contain interpolating op-
erators to create and annihilate the Bs meson state
|Bs(0)i. Here we set the initial Bs meson state at rest.

Introducing the transfer matrix on the lattice e�Ĥt, the
time dependence of the matrix element in (8) may be
expressed as
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that the ! integral is implicit on the right hand side; all
the intermediate states may exist between the currents.
Comparing the right hand side with (9), we find that the
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with some coe�cients kj(q), since the matrix elements
of the individual term on the right hand side are nothing
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(t; q)’s.

The best approximation of K(Ĥ, q) can be obtained
using the Chebyshev polynomials. We define a state
| µ(q)i on which the kernel operator is evaluated as

| µ(q)i = e�Ĥt0 J̃µ(q)|Bs(0)i. A small time evolution

e�Ĥt0 with a constant time t0 is introduced to avoid any
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are defined in the range 0  x  1. Their first
few terms are T ⇤

0 (x) = 1, T ⇤
1 (x) = 2x � 1, T ⇤

2 (x) =
8x2 � 8x + 1, and others can be obtained recursively
by T ⇤

j+1(x) = (4x � 2)T ⇤
j
(x) � T ⇤

j�1(x). Each term

of h µ|T ⇤
j
(e�Ĥ)| ⌫i/h µ| ⌫i can be constructed from

CJJ
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µ⌫
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The coe�cients c⇤
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according to the general formula of the Chebyshev ap-
proximation. The Chebyshev approximation is the best
in the sense that its maximum deviation in x 2 [0, 1] is
minimized among all possible polynomials of order N .

The integral kernel K(!, q) is chosen as

K(l)
�

(!) = e2!t0(�
p

q2)2�l(mBs � !)l

⇥✓�(mBs �
p

q2 � !) (14)

for l = 0, 1, or 2 corresponding to X(l), (5)–(7). An ap-
proximate Heaviside step function ✓�(x) is introduced to
realize the upper limit of the !-integral. In order to sta-
bilize the Chebyshev approximation, we smear the step
function in a small width �. For an explicit form, we
chose ✓�(x) = 1/(1+exp(�x/�)). The extra factor e2!t0

in (14) cancels the short time evolution e�Ĥt0 in | µ(q)i.
Figure 1 demonstrates how well K(l)

� (!) is approxi-
mated with certain orders of the polynomials, i.e. N = 5,
10 and 20. An example for l = 0 is shown. Here we take
three representative values of �: � = 0.2, 0.1 and 0.05 in
the lattice unit. The comparison is made for parameters
that roughly correspond to our lattice simulation setup:
the inverse lattice spacing 1/a ' 3.61 GeV, amBs ' 1.0,
t0/a = 1. The momentum insertion q is assumed to be
zero. The kernel function is well approximated with rel-
atively low orders of the polynomials, such as N = 10,
when su�ciently smeared, e.g. � = 0.2. For smaller �’s,
the function exhibits a sharp change near the thresh-
old ! = 1.0, and the Chebyshev approximation becomes
poorer. For better approximation, one needs higher or-
der polynomials, like N = 20. Eventually we have to
take the limit of � ! 0, and the error due to finite order
of polynomials has to be estimated. For the other cases,
l = 1 and 2, the polynomial approximations are better
than those for l = 0.

We perform a pilot study of the method described
above using a lattice data computed on an ensemble with
2+1 flavors of Möbius domain-wall fermions (the ensem-
ble “M-ud3-sa” in [17], which has 1/a = 3.610(9) GeV).
For the charm and bottom quarks only in the valence
sector, the same lattice formulation is used. The charm
quark mass mc is tuned to its physical value and the
Ds and D⇤

s
meson masses are 1.98 and 2.12 GeV, respec-

tively. The bottom quark mass is taken as 2.44mc, which
is substantially smaller than the physical b quark mass.
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FIG. 1. Approximation of the weight function K(l=0)
� (!) with

the Chebyshev polynomials of e�!. For each value of the
smearing width � (= 0.2 (top), 0.1 (middle), 0.05 (bottom)),
the approximations with the polynomial order N = 5 (dot-
ted), 10 (dot-dashed), 20 (dashed) are plotted as well as the
true curve (solid curve).

The corresponding Bs meson mass is 3.45 GeV. In this
setup, the maximum possible spatial momentum in the
Bs ! Ds`⌫̄ decay is (m2

Bs
�m2

Ds
)/2mBs ' 1.1 GeV. The

lattice volume is L3 ⇥ Lt = 483 ⇥ 96, and we calculate
the forward-scattering matrix elements with spatial mo-
menta q at (0,0,0), (0,0,1), (0,0,2) and (0,0,3) in units of
2⇡/La. The number of lattice configurations averaged is
100, and the measurement is performed with four di↵er-
ent source time-slices.

For a fixed spatial momentum q, we compute a four-
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the approximations with the polynomial order N = 5 (dot-
ted), 10 (dot-dashed), 20 (dashed) are plotted as well as the
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realize the upper limit of the !-integral. In order to sta-
bilize the Chebyshev approximation, we smear the step
function over a small width �. For an explicit form, we
chose ✓�(x) = 1/(1+exp(�x/�)). The extra factor e2!t0

in (14) cancels the short time evolution e�Ĥt0 in | µ(q)i.
Fig. 1 demonstrates how well K(l)

� (!) is approximated
with certain orders of the polynomials, i.e. N = 5, 10
and 20. An example for l = 0 is shown. Here we take
three representative values of �: 0.2, 0.1 and 0.05 in lat-
tice units. The comparison is made for parameters that

roughly correspond to our lattice setup: the inverse lat-
tice spacing 1/a ' 3.61 GeV, amBs ' 1.0, t0/a = 1.
The momentum insertion q is set to zero. The kernel
function is well approximated with relatively low orders
of the polynomials, such as N = 10, when su�ciently
smeared, e.g. � = 0.2. For smaller �’s, the function ex-
hibits a more rapid change near the threshold ! = 1.0,
and one needs higher orders, like N = 20. Eventually we
have to take the limit � ! 0, and the error due to finite
N has to be estimated. For l = 1 and 2 the polynomial
approximations are better than those for l = 0.

We perform a pilot study of the method described
above using lattice data computed on an ensemble with
2+1 flavors of Möbius domain-wall fermions (the ensem-
ble “M-ud3-sa” in [21], which has 1/a = 3.610(9) GeV).
For the charm and bottom quarks in the valence sec-
tor, the same lattice formulation is used. The charm
quark mass mc is tuned to its physical value and the
Ds and D⇤

s
meson masses are 1.98 and 2.12 GeV, respec-

tively. The bottom quark mass is taken as 2.44mc, which
is substantially smaller than the physical b quark mass.
The corresponding Bs meson mass is 3.45 GeV. In this
setup, the maximum possible spatial momentum in the
Bs ! Ds`⌫̄ decay is (m2

Bs
� m2

Ds
)/2mBs ' 1.16 GeV.

The lattice volume is L3 ⇥ Lt = 483 ⇥ 96, and we calcu-
late the forward-scattering matrix elements with spatial
momenta q of (0,0,0), (0,0,1), (0,0,2) and (0,0,3) in units
of 2⇡/La. The number of lattice configurations averaged
is 100, and the measurement is performed with four dif-
ferent source time-slices.

For a fixed spatial momentum q, we compute a four-
point function to extract CJJ

µ⌫
(t; q) (more details of the

lattice calculation are presented in [9]). We perform the
!-integral (4) using the representation (12). Matrix ele-
ments of the shifted Chebyshev polynomials are obtained
from CJJ

µ⌫
(t+2t0; q)/CJJ

µ⌫
(2t0; q) at various t’s (and t0 =

1) by a fit with constraints |h µ|T ⇤
j
(e�Ĥ)| ⌫i/h µ| ⌫i| <

1, which is a necessary condition for the Chebyshev poly-
nomials.

First, we inspect how well the Chebyshev approxima-
tion works by comparing the results for X̄(2) obtained
with the polynomial order N = 5, 10, 15 at various val-
ues of �, the width of the smearing. Fig. 2 shows that the
dependence on � is mild and the limit of � = 0 is already
reached at around � = 0.05. The dependence on N is
not significant, which indicates that the approximation
is already saturated at N ' 10. This is crucial because
the error of the lattice data is too large to constrain the
matrix elements h µ|T ⇤

j
(e�Ĥ)| ⌫i/h µ| ⌫i at j ' 10 or

larger. The results for X̄(0) and X̄(1) show the similar
tendency. We take � = 0.05 in the following analysis; the
results are within statistical error even if we extrapolate
to � = 0.

The lattice results for X̄ =
P2

l=0 X̄(l) are compared
with the OPE predictions in Fig. 3 as a function of q2.
Here, the results for di↵erent polarizations, i.e. longi-
tudinal (k: µ, ⌫ = 0 and 3) and perpendicular (?: µ,
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with the polynomial order N = 5, 10, 15 at various val-
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the error of the lattice data is too large to constrain the
matrix elements h µ|T ⇤

j
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Here, the results for di↵erent polarizations, i.e. longi-
tudinal (k: µ, ⌫ = 0 and 3) and perpendicular (?: µ,

K has a sharp hedge: sigmoid   used to replace kinematic   for  
Larger number N of Chebyshev polynomials needed for small  

1/(1 + ex/σ) θ(x) σ → 0
σ

Hashimoto, PG 2005.13730 
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FIG. 2. X̄
(2) at q = 2⇡/La(0, 0, 1) plotted as a function of

the smearing width �. Results with polynomial orders N =
5, 10, 15 are shown.

FIG. 3. X̄ as a function of q2 plotted in the physical unit.
Longitudinal (k) and perpendicular (?) polarizations are plot-
ted for vector (V V ) and axial-vector (AA) channels. Dot-
ted and dashed curves show the lowest order and O(1/m2)
OPE estimates for each channel of corresponding color, re-
spectively.

⌫ = 1 and 2) directions to q, are separately plotted for
vector (V V , squares) and axial-vector (AA, circles) cur-
rent contributions. The lowest order and O(1/m2) OPE
estimates [20] are shown in the same plot. The OPE
predictions are sensitive to the heavy quark masses. We
take the MS mass for the charm quark, m̄c(3 GeV) =
1.00 GeV, and the kinetic mass for the fictitious b quark,
mkin

b
(1 GeV) = 2.70(4) GeV, tuned to reproduce the Bs

meson mass in the simulation using the results of [22].
For the OPE matrix elements we employ the results of
the semi-leptonic fit of [5], although they refer to a light
spectator and to the physical b mass. The dashed lines
include O(1/m2) power corrections, which are large and
tend to improve the agreement with the lattice data com-
pared to the free quark decay (dotted lines).

FIG. 4. Integrand of the q2-integral plotted in the physical
unit. The dot-dashed curve is an interpolation of the lattice
data, and the O(1/m3

,↵s) OPE calculation is shown by the
red curve.

To obtain the total decay rate, we integrate X̄
p

q2 over
q2 as in (3). The vector and axial-vector contributions of
di↵erent polarizations are added. The integrand is shown

in Fig. 4. We fit X̄(l)/
p

q2
2�l

by a polynomial of q2 to
interpolate the data points. The fit curve (dot-dashed) is
terminated at q2

max. We compare the lattice results with
the corresponding OPE prediction (red curve) including
O(1/m3) [23] and O(↵s) [24] terms with ↵s = 0.27. The
power corrections are controlled here by powers of the
partonic energy

p
m2

c
+ q2 which ranges between 1 and

1.5 GeV, significantly less than that for a physical b.
They are singular at the partonic endpoint, where the
maximum energy hits the mass-shell of charm quark and
the perturbative corrections show an integrable singular-
ity.

Integrating the fit to lattice data we obtain �/|Vcb|2 =
4.9(6) ⇥ 10�13 GeV, where only the statistical error is
shown. We note that the total decay rate is about five
times smaller than that of the physical Bs meson, because
of the smaller phase space for the artificially small b quark
mass. On the OPE side, several higher order corrections
are available for the total width, including the complete
O(↵2

s
) [25, 26] and the O(↵s/m2) [27, 28] corrections. We

implement them in the kinetic scheme using the same in-
puts as above and obtain �/|Vcb|2 = 5.4(8)⇥10�13 GeV.
The dominant uncertainty is due to the value of the b
quark mass, but missing higher order corrections and un-
certainties on the matrix elements would also induce an
O(10%) uncertainty. Despite these limitations, the agree-
ment between the lattice and the OPE is remarkable.

An immediate extension of this work is of course the
calculation of the inclusive semi-leptonic decay rate of B
mesons and b baryons (b ! c`⌫̄ and b ! u`⌫̄). Moments
of kinematical variables, such as the lepton energy mo-
ments and hadronic invariant mass moments, can also be
calculated by a slight modification of the method. A nu-

Smeared spectral functions can be computed 
on the lattice in JLQCD setup, see 1704.08993

2+1 flavours of Moebius domain wall 
fermions with 1/a=3.610(9)GeV on 483x96
MBs=3.45 GeV,  i.e. ≈2.70GeV   
physical charm mass  1.00GeV
 
mb-mc~1.7GeV only,  1.16GeV

NB   : we don’t know it 
precisely…

mkin
b (1GeV )
mMS

c (3GeV ) =

qmax ∼

mlat
b = 2.44mlat

c

A PILOT NUMERICAL STUDY
Hashimoto, PG 2005.13730 

Extrapolation to   possible, but error due to finite N must be estimatedσ → 0



COMPARISON WITH OPE

When integrated numerically at physical mb and mc this expression yields
the known result

�

�0f(⇢)
= �1.778. (55)

This not the whole story yet because there are additional terms of O (↵s)
originating from a change of the scheme in which the quark masses are
defined. We consider the b–quark mass mb in the kinetic scheme and the
mass of the c–quark, mc, defined in the MS scheme. Their relations to the
pole masses at O (↵s) are given by

m
pole

b ⌘ m
kin

b (0) = m
kin

b (µ) +
↵s (µ)

⇡
CFµ

✓
4

3
+

µ

2mkin

b

◆
[8] (56)

m
pole

c =

✓
1 +

↵s (µ)

⇡

✓
4

3
+ ln

µ
2

mc (µ)
2

◆◆
mc (µ) [7] (57)

where CF = 4

3
. The results we obtain are shown as solid lines in fig. 4.
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FIG. 2. X̄
(2) at q = 2⇡/La(0, 0, 1) plotted as a function of

the smearing width �. Results with polynomial orders N =
5, 10, 15 are shown.

FIG. 3. X̄ as a function of q2 plotted in the physical unit.
Longitudinal (k) and perpendicular (?) polarizations are plot-
ted for vector (V V ) and axial-vector (AA) channels. Dot-
ted and dashed curves show the lowest order and O(1/m2)
OPE estimates for each channel of corresponding color, re-
spectively.

⌫ = 1 and 2) directions to q, are separately plotted for
vector (V V , squares) and axial-vector (AA, circles) cur-
rent contributions. The lowest order and O(1/m2) OPE
estimates [20] are shown in the same plot. The OPE
predictions are sensitive to the heavy quark masses. We
take the MS mass for the charm quark, m̄c(3 GeV) =
1.00 GeV, and the kinetic mass for the fictitious b quark,
mkin

b
(1 GeV) = 2.70(4) GeV, tuned to reproduce the Bs

meson mass in the simulation using the results of [22].
For the OPE matrix elements we employ the results of
the semi-leptonic fit of [5], although they refer to a light
spectator and to the physical b mass. The dashed lines
include O(1/m2) power corrections, which are large and
tend to improve the agreement with the lattice data com-
pared to the free quark decay (dotted lines).
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FIG. 4. Integrand of the q2-integral plotted in the physical
unit. The dot-dashed curve is an interpolation of the lattice
data, and the O(1/m3

,↵s) OPE calculation is shown by the
red curve.

To obtain the total decay rate, we integrate X̄
p

q2 over
q2 as in (3). The vector and axial-vector contributions of
di↵erent polarizations are added. The integrand is shown

in Fig. 4. We fit X̄(l)/
p

q2
2�l

by a polynomial of q2 to
interpolate the data points. The fit curve (dot-dashed) is
terminated at q2

max. We compare the lattice results with
the corresponding OPE prediction (red curve) including
O(1/m3) [23] and O(↵s) [24] terms with ↵s = 0.27. The
power corrections are controlled here by powers of the
partonic energy

p
m2

c
+ q2 which ranges between 1 and

1.5 GeV, significantly less than that for a physical b.
They are singular at the partonic endpoint, where the
maximum energy hits the mass-shell of charm quark and
the perturbative corrections show an integrable singular-
ity.

Integrating the fit to lattice data we obtain �/|Vcb|2 =
4.9(6) ⇥ 10�13 GeV, where only the statistical error is
shown. We note that the total decay rate is about five
times smaller than that of the physical Bs meson, because
of the smaller phase space for the artificially small b quark
mass. On the OPE side, several higher order corrections
are available for the total width, including the complete
O(↵2

s
) [25, 26] and the O(↵s/m2) [27, 28] corrections. We

implement them in the kinetic scheme using the same in-
puts as above and obtain �/|Vcb|2 = 5.4(8)⇥10�13 GeV.
The dominant uncertainty is due to the value of the b
quark mass, but missing higher order corrections and un-
certainties on the matrix elements would also induce an
O(10%) uncertainty. Despite these limitations, the agree-
ment between the lattice and the OPE is remarkable.

An immediate extension of this work is of course the
calculation of the inclusive semi-leptonic decay rate of B
mesons and b baryons (b ! c`⌫̄ and b ! u`⌫̄). Moments
of kinematical variables, such as the lepton energy mo-
ments and hadronic invariant mass moments, can also be
calculated by a slight modification of the method. A nu-
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OPE uncertainty: “b” mass error (dominant), higher orders, matrix elements
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LO dotted
LO  dashed+1/m2

b
LO   full+1/m2

b + αs

OPE matrix elements from fits, sizeable power and pert corrections!

Γ/ |Vcb |2 = 4.9(6) 10−13 GeV
Γ/ |Vcb |2 = 5.4(8) 10−13 GeV
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WHAT NEXT?
Leptonic, hadronic energy moments, SV sum rules with existing data

D inclusive semileptonic decays vs Cleo-c data for widths and lepton 
spectra (validation of the method, study of lattice systematics such as 
finite volume effects and disconnected diagrams, …)

Towards the physical b mass (ratio method, step scaling, …): large recoil 
momentum   problematic

Smooth cuts on experimental and OPE side?

 : kinematic cuts can in principle be implemented

Extension of the method to low energy l-N inelastic scattering          
Hashimoto et al., 2010.01253 [hep-lat]

q

B → Xuℓν, B → Xsℓ+ℓ−

https://arxiv.org/abs/2010.01253
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CONCLUSIONS

Inclusive s.l. B decays are in a good shape: consistent fit, new higher 
order calculations and future data from Belle II give hope for smaller 
uncertainties, but tension with   persists

New lattice method allows for fully non-pert calculation of inclusive 
observables (widths, moments with arbitrary kinematic cuts) 
potentially validating OPE.  Promising pilot computation at 
mb~2.7GeV in good agreement with OPE.

Lattice can also act as a virtual lab, computing obs we cannot access 
experimentally (or not precisely), which may enhance OPE 
predictivity, and observing the onset of duality

B → D*ℓν


